skip to main content


Search for: All records

Creators/Authors contains: "Slater, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The Earth climate system is out of energy balance, and heat hasaccumulated continuously over the past decades, warming the ocean, the land,the cryosphere, and the atmosphere. According to the Sixth Assessment Reportby Working Group I of the Intergovernmental Panel on Climate Change,this planetary warming over multiple decades is human-driven and results inunprecedented and committed changes to the Earth system, with adverseimpacts for ecosystems and human systems. The Earth heat inventory providesa measure of the Earth energy imbalance (EEI) and allows for quantifyinghow much heat has accumulated in the Earth system, as well as where the heat isstored. Here we show that the Earth system has continued to accumulateheat, with 381±61 ZJ accumulated from 1971 to 2020. This is equivalent to aheating rate (i.e., the EEI) of 0.48±0.1 W m−2. The majority,about 89 %, of this heat is stored in the ocean, followed by about 6 %on land, 1 % in the atmosphere, and about 4 % available for meltingthe cryosphere. Over the most recent period (2006–2020), the EEI amounts to0.76±0.2 W m−2. The Earth energy imbalance is the mostfundamental global climate indicator that the scientific community and thepublic can use as the measure of how well the world is doing in the task ofbringing anthropogenic climate change under control. Moreover, thisindicator is highly complementary to other established ones like global meansurface temperature as it represents a robust measure of the rate of climatechange and its future commitment. We call for an implementation of theEarth energy imbalance into the Paris Agreement's Global Stocktake based onbest available science. The Earth heat inventory in this study, updated fromvon Schuckmann et al. (2020), is underpinned by worldwide multidisciplinarycollaboration and demonstrates the critical importance of concertedinternational efforts for climate change monitoring and community-basedrecommendations and we also call for urgently needed actions for enablingcontinuity, archiving, rescuing, and calibrating efforts to assure improvedand long-term monitoring capacity of the global climate observing system. The data for the Earth heat inventory are publicly available, and more details are provided in Table 4. 
    more » « less
  2. Abstract

    The Getz region of West Antarctica is losing ice at an increasing rate; however, the forcing mechanisms remain unclear. Here we use satellite observations and an ice sheet model to measure the change in ice speed and mass balance of the drainage basin over the last 25-years. Our results show a mean increase in speed of 23.8 % between 1994 and 2018, with three glaciers accelerating by over 44 %. Speedup across the Getz basin is linear, with speedup and thinning directly correlated confirming the presence of dynamic imbalance. Since 1994, 315 Gt of ice has been lost contributing 0.9 ± 0.6 mm global mean sea level, with increased loss since 2010 caused by a snowfall reduction. Overall, dynamic imbalance accounts for two thirds of the mass loss from this region of West Antarctica over the past 25-years, with a longer-term response to ocean forcing the likely driving mechanism.

     
    more » « less